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Introduction

In this talk we will take a different look at com-
pactified M-theory.

We will expand on a relation between M-theory
and the mysterious infinite-dimensional Lie algebra
ElO-

Main new points:

e Classification of fluxes and ‘“‘charges” in terms
of roots of Fqp.
(A U-duality invariant generalization of K-theory?)

e Masses of Kaluza-Klein particles and branes in
terms of “FEqg variables.”

e Beyond classical supergravity: attempt to be-
gin constructing a Hamiltonian and Hilbert space
as Quantum Mechanics on a coset of Ejp.

e Imaginary roots of Eq1g play a crucial role!



Motivation

Our setting is M-theory on “710"

e \When all spatial dimensions are compact there
are no boundary conditions that can fix the
compactification parameters.

(We need at least two noncompact spatial di-
rections to have moduli.)

e Even the topology of T19 is not fixed.

e Old conjecture: the infinite dimensional Lie
algebra E1g plays a role at the level of classical
supergravity. Julia, '85

Can Eq1p describe branes?
Do branes carry “FEqp-charges?”

Can we use FE1g to describe brane interactions?
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The generators of Fqg

Consider the classical, dimensionally reduced,
Kasner metric on T10:

10
ds® = —dt* + Y R;(t)?dx?, G=dC = 0.
1=1
0<gz;<2m, i=1...10.

The generators of E1g can be split into:

10 | C.S.A. rescaling R, — e*R;
oo | real roots turn on fluxes | C — C +¢, - --
oo | imaginary roots | 7 I




Problems

We immediately encounter several problems if we
try to interpret E1p at a quantum level:

e /1o is explicitly broken in perturbation theory
and by instanton effects. For example: obvi-
ously R; — e®R; cannot be an exact symmetry!

e T he original proposal of E1g is supposed to de-
scribe only the dimensionally reduced classical
SUGRA. None of the fields is allowed to vary
In space.

e Equivalently, where are the Kaluza-Klein par-
ticles in this formalism?

Where are the M2-branes, M5-branes, etc.?

e \What do the mysterious generators that are
related to imaginary roots do?

e VWhat are the Hilbert space and Hamiltonian
on which Eqiqg acts?



Our proposal
Real roots describe fluxes.

Imaginary roots (with certain additional proper-
ties) describe brane-charges.

It has to be mentioned that imaginary roots also
have another role. They parameterize classical
derivative fields in a ‘“small tension expansion” of
the supergravity effective action.

Damour, Henneaux and Nicolai 2002

We will not discuss this role here.



The Lie Algebra Eqg

What do the generators of FE1g look like?

10 | C.S.A. J'(i=1,...,10)

oo | positive real roots o Jro

oo | positive imaginary roots | JT7:J

oo | negative roots J~ JT0I

10 | C.S.A. = Radii R;

oo | positive real roots « = fluxes, angles, ...
oo | positive imaginary roots | = 7 (branes)

oo | negative roots = ("gauge fixed")

Let's describe the indices «,~ that label JTo, j+7J.



The root lattice

The Ejg generators J1To, JT7J are labeled by
10 integers,

& — (’I’L]_,’I’IQ,n3,n4,’I’L5,’I’L6,’I’L7,’I’L8,’I’Lg,n]_o).
The integers are required to satisfy

10
n; €Z, (i=1...10), > n; =0mod3,
i=1
These conditions define the root lattice.

There are two extra conditions that o must satisfy.
The first is

2
LR
All the conditions so far define the root space.

The last condition is that the first nonzero n;
should be positive.

Such «'s are called positive roots.



Example: SL(3,R)

Before we move on, let us demonstrate the analogs
of J% for a finite Lie group such as SL(3,R).

Every element of SL(3,R) can be uniquely written
as
hi

1 a b e *x * %
1 ¢ eh2 * * *
1 e—h1—ho * * *
cSO(3)
In this case we would write
01 0 1
J(lvo) — O : J(lal) — O ,
0 0
and
0
g1 _ O 1
0

We only have three different labels, in this case.



Roots and Euclidean branes

What is the connection to the physics of M-theory?

10
ds® = —dt* + Y R;(t)?dx?, G=dC = 0.
1=1
Set
h; = |Og[MpR7;], 1=1,...,10.

The quantity

1 ~ 10 |
ZSO{ — e<h,0{> — en1h1-|-...+n10h10 — H (MpRz)nZ
1 =1

will play a central role in what follows.
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Examples

. 10
iSa — e(h,a) — en1h1+...+n10h10 — H (MPRZ)TLZ

2m 1 =1

Let us take a few examples of allowed roots:
7 R
o = (0,0,0,0,0,0,0,0,1, 1) = ) = =2
R10
_ (h,a) — 1,3
« = (0,0,0,0,0,0,0,1,1,1) = ¢ = M, RgRgR;,
O — (07 07 07 07 17 17 17 17 17 1) = e(h,Oé> — Mp6R5 T R107
a = (0,0,1,1,1,1,1,1,1,2) = " = M2R3--- RgR%,
These are the actions of: a Euclidean Kaluza-Klein

particle, M2-brane, M5-brane, and Kaluza-Klein
monopole.
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Euclidean branes and fluxes

The Euclidean branes above are instantons.

In a Minkowski metric, they should be interpreted
as processes that change a certain flux by one unit.

Example

—

2me\®) = 2r M3R1 Ry R3.

The relevant flux is Gp123 = 49)9C123)-
We identify Co = (27)2C125.

If the instanton occurs at time t, then

- [N units, for t < tq
01237 ) N 41 units, for t> ta

The contribution of this instanton
to the amplitude is

e—27re<ﬁ’0‘>-|-27rica — o—2mMyR1RyR3+(2m)%iC103.

Y
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Real and imaginary roots

Recall the definition of the norm

, o g [ 2
=1 =1
1 1
For all the roots in the previous example a? = 2.

The roots of Eig fall into two classes:
(V. Kac, Infinite Dimensional Lie Algebras.)

a? =2 real roots
a? < 0 imaginary roots

In many respects, real roots behave similarly to
their counterparts of finite dimensional Lie alge-
bras.

For example, there is one Lie algebra generator
JTa for every root
= Real roots have multiplicity m = 1.

Imaginary roots behave differently. For example,
they can have multiplicity m > 1.

This is why we used the notationC,; (j =1...m).
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Classical description - 1

Kasner metric on 710
10
ds® = —dt* + Y R;(t)?da?,
i—1
0<a;<2m, i=1...10,

We would like to rewrite
the Einstein-Hilbert action | ,/gR.

Define

h=(hi,h2,...,h10),  h;=109[MpR;].
and define conformal time

_ /t dt’
T — ,
to M3 Vip(t")

VlO = Rl"'RlO-
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Classical description - II

Define
- 2
an|” _ 3 () (§2
drll — “~—~ \df —~ dr |
1=1 1=1
Then
dilI?
/\/ngloxdt —>/|? d7.
T

The metric || -||2 has signature (9, 1).

Connection with FEqq:
Space of h = Flr Cartan subalgebra of Eqg.
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Classical solution -1

The classical GR equations of motion are
-2
dh
= 0.

d7

=l

d72
The solution is

Ih. 10 10 \?
—= =k, (i=1...10), S k(Y k| =0,
=

1

1

d2
_o |

To express in terms of ¢, we recall Mpdt = MyOV;od7

We need to calculate Vg

dlog[MyOVi] dh;
- — = — Zkz
dr : dr :
Then

d ex k:) T
Mydt = MOV odr = PP UL K T]

> ki

log| Myt
— 7 = gl p]+const

> k;
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Classical solution - II

We can express the solution as

h; = k;74+const = p; log[Mpt]+4const, p; =

We get the Kasner solution

R; ~ tP5 Sopi =Y pf=1.

The evolution of the universe is described by an
abstract particle moving at constant velocity (w.r.t.
conformal time 7) in h;-space Hg.
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Asymptotic regions

From that Kasner solution

R; ~ tP7 SNpi=Ypf=1.
We see that

Directions with p; > 0 EXxpanding
Directions with p; < 0O Contracting

S pi=Ypi=1=

at least one p; > 0 and at least one p; < 0.

But,

0> (Tn) =

there exists some (M, IIA, IIB) weakly coupled
SUGRA description for ¢t — oo.

Banks & Fischler & Motl, 1998

We need to add matter for this condition to hold.
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Adding fluxes

To start, suppose we turn on only the component
G1234. Flux quantization requires it to be an in-
teger. It then contributes a potential term to the
classical supergravity action proportional to

G2 G
a2 — 1234y, C1234(p. .. Ri)2

Vio = R1 - Rq0-

Switching to conformal time,

. _/ dt’
T — 5
to MZV10(t')
The full Lagrangian becomes
L =27 diL
d

T

—r[(2n) G123‘L]2 2(hs+he+h7+hg+hg+hio)

|nteger
In terms of roots

¢2(hs+he+h7+hg+hothio) — ,2(h)
where
a=(0,0,0,0,1,1,1,1,1,1).
IS a real root.

19



Adding fluxes - conclusion

To add N units of flux,
augment the Lagrangian by

_aN2e2(ha)

where « is the real root that corresponds to the
flux.

We have the relation:

Real roots a — fluxes «<— instantons.
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Imaginary roots

We have seen that real roots a are related to in-
stantons or fluxes. What is the interpretation of
imaginary roots?

Example 1

") = MPRyRyR3R4RsRsR7RgRg, 2 = 0.
Recall conformal time d7 = dt/MjV1o. Note that
o(7:h)
M}?V10

Could this v be related to a Kaluza-Klein particle?

= (R10) 1,

Example 2

M) = M12(RyRy)2R3R4RsRgR7RgRoR10, 72 =O.
Note that
o(v:h)
MI?Vlo

Could this v be related to an M2-brane?

= MI:;BR]_RQ,
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Brane creation between two instantons

(b)

. @

v,

Two instantons associated with the real roots o, 8.
Each instanton creates a jump in the associated
flux. Instanton «a creates a jump from a nonzero
value to 0, while instanton 8 changes another flux
from O to a nonzero value.

(a) Instanton o occurs before instanton S,
and the different fluxes do not overlap;

(b) Instanton a occurs after instanton g3,
and the fluxes overlap between t, and tg-
In addition a particle associated to vy = a +
IS created between the two instantons.
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Interactions of branes with fluxes

(a) Mass term (b) Dipole term (c) CS term

(a|B) =0 (o) =—-1  (a|p) = -2
1,2,3 1,2 1...7
B1H B1H 4 Bl .80
/W/ $0¢ /A/\F/
+ Fip
a 8,9 a 8,9 a 8,9

The D2-brane is in the plane of the 8% 9% direc-
tions (and time). The imaginary root associated
with it is «. The flux is associated with the real
root (.

The arrows indicate the directions of the flux:

(a) A mass term appears as a result of an NSNS
flux orthogonal to the brane;

(b) A dipole interaction appears as a result of an
NSNS flux with two legs orthogonal to the brane
and one leg parallel to the brane;

(c) A Chern-Simons term appears in massive type-
IIA theory (the flux permeates throughout space);
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Interactions of branes with fluxes - Summary
To summarize, we have found the following inter-
actions of fluxes with branes

(a|) =0 == Mass term,
(a|3) = —1 == Dipole interaction,
(a|) = —2 == Chern-Simons.

24



Z~>-orbifolds

Consider a Z» orbifold of M-theory on T19, where
Z~ acts as an isometry and, possibly, worldvolume

orientation reversal.

We would like to describe this Z, action in terms

of E1p.

Type Background Object Number
TS x (S'/Z,) D8-branes 16
T2 x (T°/Z>) M5-branes 16
T2 x (T®/Z5) M2-branes 16

S1 x (T°/Z5)
T® x (T*/Z>)

<>

KK-particles 16
exceptional S2 16

Exceptional branes — Imaginary root «

What is the algebraic connection between o and

the Zo on E107
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The Answer

The Z, action defines a Zoy-gradation of the root
lattice of Eqp.

Every root 8 has a Z»-charge

Q(B)=00o0r1
that is determined by the orbifold.

The relation to the
Exceptional branes — Imaginary root «, Is

Q(B) = («f8) mod 2.
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Example: T°/Z>

The orbifold T°/Z5:

9ij — 9ij 1<1,5<5,

91 — —Gil, 1<:1<5, 6<L1I1<10

grg — 917 6 <1,/ <10

Cijk — —Cijk; 1<i1<j<k<5

Ciik — Cijk, 1<i<j<5 6<K<10
Ciik — —-Ciik, 1<:<5, 6<ZJ<K<KXKI10
Crik — Crik, 6<I<K<J<K<KKLIO

[Dasgupta & Mukhi, Witten]

There are 16 exceptional Mb-branes in direction
1...5.

a=(2,2,2,2,2,1,1,1,1,1).
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The Laplacian A on exp F1g9/K1g

2

dh
—|| dT.
dT

/ JIRAOzdt — / |

The metric || -||2 has signature (9, 1).

Connection with FEqq:
Space of h = Flr Cartan subalgebra of Eqg.

Quantum mechanically we get the Wheeler-deWitt
equation: #Hg W = 0.

2
9 2 °)
o 1 )
Hop=—Y —s+=|> —
’ kzlath 9<k:18hk)
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Landau levels and brane anti-brane pairs

2
o= 2y 00 2ip (O, O
0Ca? 8Cg 8Cs
__o2(hy) 0° >+

‘%%j

Set
VsJ -
36%.7’

Then

- 82 - O 2

_ 2(h, 2(h, .

Y = ..._ & 04>aca2 _ 2(h,B) (8—05_]\7%‘76&) 4 ...
LLandau levels:

1 — —
E=m+w,  w=2"TN =20 ),
Identify

n = Fpairs
But we need
N%j -~ 27TZ,

which is strange!
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Summary

e Prime isotropic imaginary roots correspond to
Minkowski branes.

e [ he exceptional branes in Z> orbifolds corre-
spond to the imaginary root that defines the
Z»> charge.

e \We have a "K-theory like” characterization:

Real roots <— Fluxes
Prime isotropic imaginary roots <= Charges

e Energy levels with AFE proportional to brane
masses arise as Landau-levels of QM on a coset
of F1g. (But a prefactor of 2« requires a wrong
periodicity for the variables!)

e Interactions of branes with branes and of branes
with fluxes can be characterized by the inner
product of the corresponding roots.
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